
Word problems are the domesticated beasts of burden of school mathematics. They would never survive very long on their own in the wild, but they do a good day's work in the service of giving students practice in basic problem-solving techniques. Does it matter that classroom word problems are so weak and denatured?
Permit me to lay out some of the difficulties that led me to the question I posed. The problems we give our students in math classes are highly idealized. Their answers are typically whole numbers or, at worst, simple rational numbers with small denominators. There's the rub. It means that many of them (most of them?) can be readily dispatched with a few desultory rounds of guess-and-check. Does ! x = 1 work? No? Then how about x = 2? Lots of students know this approach and even get instruction in guessing strategies in their elementary math classes.
This makes me unhappy. Students end up wanting full credit for answers that they snatched out of thin air. It's the right answer, damn it! Give me my points! I tell them that we can make a little deal: Either I will devise problems with fairly nice answers (like 2, 5, or 3/2) and they will show me their work in careful steps, or I will devise problems with less nice answers (like –17 and 41/29) and they can find the answers however they damned well please. With a certain amount of grumbling, a large majority then concedes that they prefer to show their work and find rather “nice” answers.
Process & product
Unfortunately, we often train our students to focus too much on product (the answer!) and neglect the process (the solution algorithm). I'v! e tried very hard, but with only mixed success, to persuade my! student s that we care how the answer is found as much as we care about what the answer is. This position produces cries of dismay from students who want to do things their own way. One student complained at RateMyProfessors.com about a teacher who insisted on “showing your work”: “The last time I checked, math was all about finding the right answer!”
Sorry, kid. I don't know where exactly you “checked,” but it's not that simple. Sure, answers are important and you won't get full credit without a correct answer, but I expect more from you than just answers. I expect a demonstrated ability to apply the processes that I teach you.
It might appear that the answer-focused students have an ally in the late Richard Feynman, the famous Nobel-la! ureate physicist. In a delightful video interview (at the 9 minute mark), Feynman relates his cousin's unhappy experience with algebra:
My cousin at that time—who was three years older—was in high school and was having considerable difficulty with his algebra. I was allowed to sit in the corner while the tutor tried to teach my cousin algebra. I said to my cousin then, “What are you trying to do?” I hear him talking about x, you know.Hmm. Feynman was a lot smarter than I am, so should I now stroll away, whistling casually, as if I had never argued against the primacy of the value of x? Uh, no.
“Well, you know, 2x + 7 is equal to 15,” he said, “and I'm trying to figure out what x is,” and I says, “You mean 4.” He says, “Yeah, but you did it by arithmetic. You have to do it by algebra.”
And that's why my cousin was never able to do algebra, because he didn't understand how he was supposed to do it. I learned ! algebra, fortunately, by—not going to school—by kn! owing th e whole idea was to find out what x was and it didn't make any difference how you did it. There's no such a thing as, you know, do it by arithmetic, you do it by algebra. It was a false thing that they had invented in school, so that the children who have to study algebra can all pass it. They had invented a set of rules, which if you followed them without thinking, could produce the answer. Subtract 7 from both sides. If you have a multiplier, divide both sides by the multiplier. And so on. A series of steps by which you could get the answer if you didn't understand what you were trying to do.
I believe that Feynman and I are talking about rather different things. Or different contexts, at least! . I share Feynman's disdain for the blindly memorized algorithm, which is guaranteed to generate the correct answer whether the student understands the process or not. I want my students to understand why an equation remains valid when you add the same quantity to both sides, or divide both sides by the same nonzero number. (I like content in addition to process and product.) On the other hand, I'm dismayed when students (college students, no less) refuse to learn how to follow instructions. Carefully rehearsing algorithms and practicing problem-solving processes should permit almost any student to achieve the minimum level of expertise that we require for a passing grade. In reality, however, approximately half of the students who take elementary algebra at the community college level fail the class. What's going on?

Does that seem right to you? If that's what occurred in a split-second in Feynman's head, he could readily agree that he didn't need algebra to solve the problem. However, my imagined first step is nicely e! quivalent to subtracting 7 from both sides, the rote algorithmic process that Feynman cited with disdain in his interview. As for the second step, it matches with the process of dividing both sides of the equation by the multiplier in front of the variable. To Feynman's cousin, however, Feynman was just blurting out a number without doing any work, but algebra by any other name is still algebra. I don't believe for even a second that Feynman found the answer by running through lists of numbers until one happened to work. Yeah, he was doing algebra.
If you know anything about Feynman, you know that he was a prodigious problem solver. He puzzled over problems both great and small. (In the video interview he recounts the famous story of the spinning dinner plate that eventually led him to the work that won the Nobel prize. That started out as a very small problem indeed.) Feynman was not interested in rote processes, although he used them subconsciously over and ove! r again whenever he was making computations. For him, the subr! outines of calculation were submerged at a very low level while the novel aspects of each new problem remained uppermost in his mind. Algebra students, by contrast, exist at the level of those basic subroutines and may be puzzling over them quite as much as Feynman did with the problems at his much higher level. Who's to say?
Earlier I asked whether it mattered that the problems in our math classes are so lame. Part of the answer lies in the fact that most students meet these problems at a very elementary level of mathematics. We are nowhere close to the Feynman level of relativistic physics in our applications exercises. Heck, we're not even at the level of Newton's basic law of gravity. It's all very well to be told that a thrown object traces a parabolic trajectory, but a real-life projectile problem would have to factor in the aerodynamic properties of the thrown object as well as the effects of any wi! nd. You can be quite sure that the result would not be a problem suitable for introductory algebra. Yes, we draw the teeth of the application problems before we give them to our students. When they suspect that I'm holding something back, I cheerfully admit that there are always additional complications that can be thrown in later if they ever grow up to be a range officer at an artillery field. In the meantime, we are clearing the playground of dangerous obstacles so that they can run and jump safely. Sometimes, unfortunately, the result is an extremely flat and boring space. I promise to stay on guard against overdoing it.
It's a conversation
As an algebra teacher, I frequently fear that I am in the position of punishing creativity. That can happen when one is dealing with a highly prescriptive syllabus for a course that is a prerequisite for practically every health, science, and technology class on campus. I take some refuge in my practice o! f showing alternative approaches to problems, giving students ! some fle xibility in finding the method that works best for each individual. I'm not very prescriptive on exams either, sharing my students' negative attitude toward problems that demand a specific technique. Thus my students are free to solve their quadratic equations by factoring (if possible), completing the square (always possible), or applying the quadratic formula (after it's been introduced, of course: no fair using it before it's been presented to your classmates!). But even if I try to keep algebra from being a straitjacket, it is nevertheless a tight fit. Not a lot of wiggle room.
Sometimes I invoke Feynman's name when I want to make a point about problem solving, and I particularly recommend his compilation of autobiographical anecdotes (“Surely You're Joking, Mr. Feynman!”) as a wo! nderful introduction to the life of one of the twentieth century's greatest thinkers. I don't know, though, if I'll risk sharing with my algebra students his remarks about how their class is a “false thing” invented to permit the clueless to solve math problems. It's an intriguing thought. I will, however, continue to work on my answers to those students who want to do things “their own way.” My usual answer is to apologize in advance if they are creative geniuses whom I have failed to recognize and to suggest it will be amusing to report my myopia in their autobiographies after they are famous. When they stop laughing (and if they don't laugh then you have completely misread the class and made a huge mistake!), I move on to my next point: Human endeavors don't exist in a vacuum. Even math is a form of communications that can be used to convey information if applied in ways that other people will understand. Here I can invoke Feynman once again, who ! recounts in the first chapter of his autobiography how he once! went as tray with his highly personal and idiosyncratic approach to trigonometry:
While I was doing all this trigonometry, I didn't like the symbols for sine, cosine, tangent, and so on. To me, “sin f” looked like s times i times n times f! So I invented another symbol, like a square root sign, that was a sigma with a long arm sticking out of it, and I put the f underneath.... I thought my symbols were just as good, if not better, than the regular symbols—it doesn't make any difference what symbols you use—but I discovered later that it does make a difference. Once when I was explaining something to another kid in high school, without thinking I started to make these symbols, and he said, “What the hell are those?” I realized then that if I'm going to talk to anybody else, I'll have to use the standard symbols, so I eventually gave up my own symbols.See, kids, sometimes even Feynman had to go mainstrea! m.
algebra word problems solver
No comments:
Post a Comment